EXHIBIT C:

GMZ for Will County

Amy L. Hanrahan Senior Environmental Engineer Environmental Services

January 18, 2013

Ms. Andrea Rhodes
Illinois Environmental Protection Agency – DPWS
MC #19
1021 North Grand Avenue East
Springfield, IL 62702

VIA FEDERAL EXPRESS

Re:

Compliance Commitment Agreement – Groundwater Management Zone Application
Midwest Generation, LLC, Will County Generating Station; ID No. 6283
Violation Notice W-2012-0058

Dear Ms. Rhodes:

The Compliance Commitment Agreement (CCA) for the above referenced site relative to Violation Notice W-2012-00058 was signed by Midwest Generation on October 15, 2012 and executed by Illinois Environmental Protection Agency (IEPA) signature on October 24, 2012 (effective date). Item 5 (g) of the CCA requires Midwest Generation to submit an application to establish a Groundwater Management Zone (GMZ) pursuant to 35 Ill. Adm. Code Part 620.250 within 90 days of the effective date of the CCA.

Based on previous discussions with IEPA, the proposed areal extent of the GMZ is shown on Figure 1 in Attachment 1. The GMZ Application Forms (Parts I through III) and supporting information/data are provided in Attachment 2. As discussed in the Application Forms support documentation, groundwater flow in the vicinity of the subject ash ponds is in a westerly direction with discharge to the adjoining Des Plaines River. The western (downgradient) extent of the proposed GMZ corresponds with this hydraulic boundary. The eastern boundary is defined by the Chicago Sanitary and Ship Canal (CSSC) which forms a hydraulic boundary on the east side of the facility. The north and south sides of the proposed GMZ are based on the flow system and location of the four ash ponds. The vertical extent of the GMZ would be the first underlying aquitard identified as the Maquoketa Shale, approximately 140 feet below ground surface. The GMZ would therefore vertically include the unconsolidated overburden and the Silurian dolomite, both of which are hydraulically connected and overlie the Maquoketa Shale.

235 Remington Blvd Suite A Belingbrook, Jl 00440 Lel: 050 771 7865 Fax: 949 225 0813 altaurahanssmu, 2402 m.

Ms Andrea Rhodes IEPA DPWS Re: GMZ Application Will County Station Page 2 January 18, 2013

This submittal fulfills the requirements set forth under Item 5 (g) of the signed CCA. Once the application is approved by IEPA and the proposed extent of the GMZ is agreed upon, a formal surveying of the area will be performed and legal description generated. Please call me at 630-771-7863 if there are any questions.

Sincerely,

Midwest Generation, LLC

Amy Hanrahan

Senior Environmental Engineer

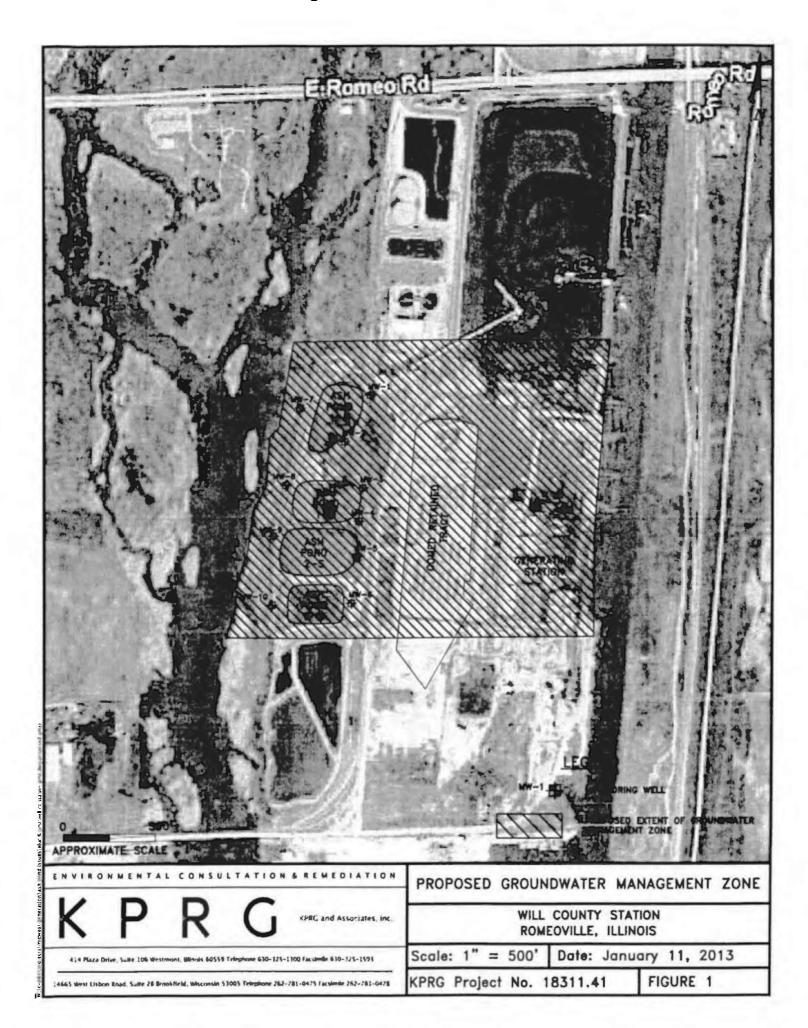
Attachments: 1 Proposed Areal Extent of GMZ

2 - Completed GMZ Application Forms (Parts 1 through III)

cc: Ms. Maria Race, Midwest Generation EME, LLC

Mr. Basil Constantelos, Midwest Generation EME, LLC

Ms. Rebecca Maddox, Midwest Generation, LLC


Mr. Christopher Foley, Midwest Generation EME, LLC

Ms. Susan Franzetti, Nijman Franzetti, LLP

Mr. Richard Gnat, KPRG and Associates, Inc.

Mr. Bill Buscher, IEPA

<u>ATTACHMENT 1</u> Proposed Areal Extent of GMZ

<u>ATTACHMENT 2</u> Completed GMZ Application Forms (Parts I through III)

Section 620.APPENDIX D Confirmation of an Adequate Corrective Action Pursuant to 35 Ill. Adm. Code 620.250(a)(2)

Pursuant to 35 Ill. Adm. Code 620.250(a) if an owner or operator provides a written confirmation to the Agency that an adequate corrective action, equivalent to a corrective action process approved by the Agency, is being undertaken in a timely and appropriate manner, then a groundwater management zone may be established as a three-dimensional region containing groundwater being managed to mitigate impairment caused by the release of contaminants from a site. This document provides the form in which the written confirmation is to be submitted to the Agency.

- Note 1. Parts I and II are to be submitted to IEPA at the time that the facility claims the alternative groundwater standards. Part III is to be submitted at the completion of the site investigation. At the completion of the corrective process, a final report is to be filed which includes the confirmation statement included in Part IV.
- Note 2. The issuance of a permit by IEPA's Division of Air Pollution Control or Water Pollution Control for a treatment system does not imply that the Agency has approved the corrective action process.
- Note 3. If the facility is conducting a cleanup of a unit which is subject to the requirements of the Resource Conservation and Recovery Act (RCRA) or the 35 Ill. Adm. Code 731 regulations for Underground Storage Tanks, this confirmation process is not applicable and cannot be used.
- Note 4. If the answers to any of these questions require explanation or clarification, provide such in an attachment to this document.

Part I. Facility Information Facility Name Will County Generating Station Facility 529 East 135th Street Address Romeoville, IL County Will County Standard Industrial Code 4911 (SIC)

1. Provide a general description of the type of industry, products manufactured, raw materials used, location and size of the facility.

The Midwest Generation Will County Station is a coal-fired electrical power generating station in operation since the mid-1950s. The facility is located at 529 E. 135th Street in Romeoville, Illinois. The generating station property covers an area of approximately 200 acres.

2. What specific units (operating or closed) are present at the facility which are or were used to manage waste, hazardous waste, hazardous substances or petroleum?

	YES	<u>NO</u>
Landfill		X
Surface Impoundment	<u>X</u>	
Land Treatment		_X
Spray Irrigation		_X
Waste Pile	X	
Incinerator		_X
Storage Tank (above ground)	_X	
Storage Tank (underground)		_X
Container Storage Area	<u>X</u>	
Injection Well		_X
Water Treatment Units	X	
Septic Tanks		_X
French Drains		X
Transfer Station		_X
Other Units (please describe)		

3. Provide an extract from a USGS topographic or county map showing the location of the site and a more detailed scaled map of the facility with each waste management unit identified in Question 2 or known/suspected source clearly identified. Map scale must be specified and the location of the facility must be provided with respect to Township, Range and Section.

Please see Figures 1 and 2 in Attachment 2A.

4. Has the facility ever conducted operations which involved the generation, manufacture, processing, transportation, treatment, storage or handling of "hazardous substances" as defined by the Illinois Environmental Protection

		Yes X No If the answer to this question is "yes" generally be these operations.
substa	nce was	Generating Station generates typical hazardous and non-hazardous ites associated with coal-fired electrical power generation. A full list substances can be provided upon request.
5.	the Re	e facility generated, stored or treated hazardous waste as defined by source Conservation and Recovery Act? Yes X No If the r to this question is "yes" generally describe these operations.
associa chemic	ated wi	hazardous wastes have typically been lead paint chip debris ith lead paint removal, empty acrosol cans, spent laboratory drazine, monoethylamine, formic acid), etc. Complete logs of ted and disposed of can be provided upon request.
6.	storage	e facility conducted operations which involved the processing, c or handling of petroleum? Yes X No If the answer to this on is "yes" generally describe these operations.
operati	ions and	tores oil for operations in above ground storage tanks for start-up d for heavy equipment fueling and other diesel powered equipment, an above ground gasoline storage tank and two used oil storage
7.	Has th	e facility ever held any of the following permits?
	a.	Permits for any waste storage, waste treatment or waste disposal operation. Yes X No If the answer to this question is "yes", identify the IEPA permit numbers.
		cility utilizes a sewerage treatment system that discharges to the Des River under NPDES Permit No. IL0002208.
	b.	Interim Status under the Resources Conservation and Recovery Act (filing of a RCRA Part A application). Yes No _X If the answer to this question is "yes", attach a copy of the last approved Part A application.
	c.	RCRA Part B Permits. Yes No _X _ If the answer to this question is "yes", identify the permit log number.
8.		e facility ever conducted the closure of a RCRA hazardous waste ement unit? Yes No _X

9. Have any of the following State or federal government actions taken place for a release at the facility? Written notification regarding known, suspected or alleged a. contamination on or emanating from the property (e.g., a Notice pursuant to Section 4(q) of the Environment Protection Act)? Yes X No ___ If the to this question is "yes", identify the caption and date of issuance. A Violation Notice was issued by IEPA on June 11, 2012 relative to the four ash impoundments alleging a potential release of coal ash constituents to groundwater (Violation Notice No. W-2012-00058). This was resolved through a Compliance Commitment Agreement (CCA) dated October 4, 2012 and formally executed on October 24, 2012. This submittal is part of the CCA compliance. b. Consent Decree or Order under RCRA, CERCLA, EPAct Section 22.2 (State Superfund), or EPAct Section 21(f) (State RCRA). Yes ___ No <u>X</u> If either of Items a or b were answered by checking "yes", is the C. notice, order or decree still in effect? Yes X No ____ The CCA is currently in effect. What groundwater classification will the facility be subject to at the 10. completion of the remediation? Class I X Class II Class III Class IV

11. Describe the circumstances which the release to groundwater was identified.

If more than one Class applies, please explain.

As requested by Illinois Environmental Protection Agency (IEPA), a groundwater monitoring plan was developed and implemented for Ash Pond 1N, 1S, 2S and 3S located on the west side of the facility. A total of ten monitoring wells were installed around the four ash ponds. Quarterly sampling was initiated in December 2010 and has been ongoing since. The data were provided to IEPA on a quarterly basis. Based on the monitoring data, on June 11, 2012, IEPA issued a Violation Notice (W-2012-00058) to Midwest Generation alleging that potential leakage from the ponds has resulted in a violation of Class I groundwater standards for antimony, boron, chloride, manganese, pH, sulfate and total dissolved solids.

Based on my inquiry of those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true and accurate.

Will County Generating Station

Facility Name Romeoville, IL

Location of Facility

ID No. 6283

EPA Identification Number

Signature of Owner/Operator

Midwest Generation

Name of Owner/Operator

Date

PART II: Release Information

Identify the chemical constituents release to the groundwater. Attach
additional documents as necessary.

Chemical Description	Chemical Abstract No.
Antimony	7440-36-0
Boron	7440-42-8
Chloride	16887-00-6
pH	Not Applicable
Manganese	7439-96-5
Sulfate	18785-72-3
Total Dissolved Solids	C-010

Describe how the site will be investigated to determine the source or sources of the release.

This work has already been performed. As requested by Illinois Environmental Protection Agency (IEPA), Midwest Generation, LLC (Midwest Generation) prepared and submitted on September 3, 2010 a Hydrogeologic Assessment Plan for four ash ponds located at the Will County Generating Station. The purpose of the hydrogeologic assessment was to: (i) evaluate the potential, if any, for migration of ash related constituents from the ash ponds and conduct monitoring for groundwater constituents regulated by Illinois Part 620 groundwater standards; (ii) characterize the subsurface hydrogeology: and (iii) identify potable well use within 2,500 feet of the ash ponds.

Upon IEPA approval of the Hydrogeologic Assessment Plan, a total of ten monitoring wells (MW-1 through MW-10) were installed around the four ash ponds identified as Ash Ponds 1N, 1S, 2S and 3S (see Figure 3 in Attachment 2A). The wells were drilled and constructed in October 2010 after which point quarterly monitoring was initiated in accordance with approved, low-flow sampling procedures. A Hydrogeologic Assessment Report for Will County Generating Station was prepared by Patrick Engineering, Inc. and submitted by Midwest Generation, LLC to IEPA in February 2011. The results of the Hydrogeologic Assessment Report are incorporated into this application submittal by reference.

Since the submittal of the Hydrogeologic Assessment Report in February 2011, quarterly monitoring of the wells has been ongoing. The most recent round of sampling was performed in December 2012. A complete updated data summary table is provided in Attachment 2B. An updated groundwater flow map using the water level measurements from the most recent round of sampling is provided as Figure 4 in Attachment 2A.

3. Describe how groundwater will be monitored to determine the rate and extent of the release.

As part of the hydrogeologic assessment already performed (see discussion for item 2 above), in-situ hydraulic conductivity tests were performed on five of the monitoring wells (MW-1, MW-4, MW-6, MW-7 and MW-9) installed around the ash ponds. Based on the results of the testing, hydraulic conductivity values in the vicinity of the well screens were found to range from 6.38 x 10⁻⁵ to 2.07 x 10⁻⁴ ft/sec with an average hydraulic conductivity of 4.32 x 10⁻⁴ ft/sec. Using the average hydraulic conductivity value, an estimated hydraulic gradient of 0.015 ft/ft based on the most recent groundwater contour map (Figure 4 in Attachment 2A) and an estimated effective porosity of 0.20 yields an estimated groundwater seepage velocity of approximately 2.8 ft/day.

Relative to the extent of impacts, a box-plot map of detections of the constituents identified in Part II - Item 1 above is provided as Figure 5 in Attachment 2A.

4. Has the release been contained on-site at the facility?

Yes. All groundwater monitoring data indicates that the impacts are limited to within the property boundary. Natural groundwater flow is generally to the west with discharge into the adjacent Des Plaines River. There are some instances when there could be flow to the east from the river onto the property at times of higher river stage.

5. Describe the groundwater monitoring network and groundwater and soil sampling protocols in place at the facility.

The IEPA approved groundwater monitoring network at the site consists of ten monitoring wells (MW-1 through MW-10) located around the four existing ash ponds (see Figure 1 in Attachment 2A). Wells MW-1 through MW-6 are generally upgradient monitoring wells. The remaining wells are considered downgradient monitoring points. The well borings were advanced using hollow-stem augers to depths ranging from approximately 18 to 22 feet below ground surface (bgs). The depth of a specific boring was terminated approximately 10 feet below the encountered water table. The wells were subsequently constructed using standard, 2-inch diameter PVC casing with 10-feet of 0.010 slot PVC screens. The wells were completed approximately three feet above grade with locking protective steel casings and bumper posts. The boring logs and well construction summaries are included in the above referenced Hydrogeologic Assessment Report (see discussion for item 2 above). The monitoring wells are sampled on a quarterly basis using low-flow sampling with a peristaltic pump. Field measurements of pH, specific conductivity, temperature, dissolved oxygen (DO) and oxidation-reduction potential (ORP) are recorded. Once collected, the samples are placed on ice and transported under a completed chain-of-custody to TestAmerica, Inc. which is an Illinois

accredited analytical laboratory. The samples are analyzed for the inorganic compounds listed in 35 IAC 620.410(a) and (d), excluding radium 226/228.

There is no soil sampling that is performed as part of the approved site monitoring program.

6. Provide the schedule for investigation and monitoring.

Groundwater sampling of all existing monitoring wells is performed on a quarterly basis. The general sampling schedule is as follows:

Event Sampling Schedule

1st Quarter March

2nd Quarter June

3rd Quarter September

4th Quarter December

7. Describe the laboratory quality assurance program utilized for the investigation.

TestAmerica's Quality Assurance Manual (QAM) is a document prepared to define the overall policies, organization objectives and functional responsibilities for achieving the laboratory's data quality goals. The laboratory maintains a local perspective in its scope of services and client relations and maintains a national perspective in terms of quality.

The QAM has been prepared to assure compliance with the NELAC Institute (TNI) Standard, dated 2009, Volume 1 Modules 2 and 4, and ISO/IEC Guide 17025:2005(E). In addition, the policies and procedures outlined in this manual are compliant with TestAmerica's Corporate Quality Management Plan (CQMP) and the various accreditation and certification programs. The CQMP provides a summary of TestAmerica's quality and data integrity system. It contains requirements and general guidelines under which all TestAmerica facilities shall conduct their operations.

The QAM has been prepared to be consistent with the requirements of the following documents:

- EPA 600/4-88/039, Methods for the Determination of Organic Compounds in Drinking Water, EPA, Revised July 1991.
- EPA 600/R-95/131, Methods for the Determination of Organic Compounds in Drinking Water, Supplement III, EPA, August 1995.
- EPA 600/4-79-019, Handbook for Analytical Quality Control in Water and Wastewater Laboratories, EPA, March 1979.

- Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846), Third Edition, September 1986, Final Update I, July 1992, Final Update IIA, August 1993, Final Update II, September 1994; Final Update IIB, January 1995; Final Update III, December 1996; Final Update IV, January 2008.
- Federal Register, 40 CFR Parts 136, 141, 172, 173, 178, 179 and 261.
- Statement of Work for Inorganics Analysis, SOM and ISM, current versions, USEPA Contract Laboratory Program Multi-media, Multiconcentration.
- APHA, Standard Methods for the Examination of Water and Wastewater, 18th Edition, 19th, 20th, 21st and on-line Editions.
- U.S. Department of Energy Order 414.1C, Quality Assurance, June 17, 2005.
- U.S. Department of Energy, Quality Systems for Analytical Services, Revision 3.6, November 2010.
- U.S. Department of Defense, Quality Systems Manual for Environmental Laboratories, Final Version 4.2, October 2010.
- U.S. Department of Defense, Air Force Center for Environmental Excellence Quality Assurance Project Plan (QAPP), Version 4.0.02, May 2006.
- National Environmental Laboratory Accreditation Conference, Constitution, Bylaws, and Standards, EPA 600/R-04/003, US EPA Office of Research and Development, June 2003
- Toxic Substances Control Act (TSCA).

Copies of TestAmerica's QAM and CQMP can be provided upon request.

8. Provide a summary of the results of available soil testing and groundwater monitoring associated with the release at the facility. The summary or results should provide the following information: dates of sampling; types of samples taken (soil or water); locations and depths of samples; sampling and analytical methods; analytical laboratories used; chemical constituents for which analyses were performed; analytical detection limits; and concentrations of chemical constituents in ppm (levels below detection should be identified as "ND").

The data summary for all groundwater sampling performed to date are provided in Tables 1 and 2 in Attachment 2B.

Based on my inquiry of those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of knowledge and belief, true and

accurate and confirm that the actions identified herein will be undertaken in accordance with the schedule set forth herein.

Will	County	Generati	ing	Station
------	--------	----------	-----	---------

Facility Name

Romeoville, IL Location of Facility

ID No. 6283

EPA Identification Number

Stgrature of Owner/Operator

midwest Generat

Name of Owner/Operator

January 17, 2013

Date

Part III: Remedy Selection Information

Describe the selected remedy.

Ash Pond 1S is already lined with high density polyethylene (HDPE) and the remaining three ash ponds have a Poz-o-Pac liner. The agreed upon remedy is specified in Item 5 (a) through (j) of the executed Compliance Commitment Agreement (CCA) which is provided in Attachment 2C. The remedy includes relining of Ash Pond 2S with HDPE, removing Ash Ponds 1S and 1N from service and installing a dewatering system within those ponds to keep liquid levels to within no more than one foot of the bottoms of those units. This Groundwater Management Zone (GMZ) application fulfills requirements set forth under Item 5 (g) of the CCA.

Describe other remedies which were considered and why they were rejected.

The primary alternate remedy discussed during negotiations with IEPA was to ensure that the ash ponds will not be used as permanent disposal sites, maintain the ash ponds in a manner that will be protective of the integrity of the existing liners, include visual inspections of the liners during ash removal events, implement repairs or replacement of the liners as necessary, establish a GMZ and to continue with the existing quarterly groundwater monitoring program until the federal ash regulation revisions are established. Upon the finalization of the new federal ash storage regulations, retrofit the impoundments, as necessary, to meet the new technical requirements for ash storage impoundments or re-engineer plant processes to maintain compliance and take the impoundments out of service.

This remedy was rejected by IEPA due to the uncertainty of the timeframe within which the new federal regulations will be issued.

3. Will waste, contaminated soil or contaminated groundwater be removed from the site in the course of this remediation? Yes X No If the answer to this question is "yes", where will the contaminated material be taken?

The ash that will be removed from Ash Pond 2S to facilitate new liner construction will be taken by Lafarge NA for beneficial reuse.

4. Describe how the selected remedy will accomplish the maximum practical restoration of beneficial use of groundwater.

Once Ash Pond 2S is relined with a HDPE liner, the two ponds that will remain in service for active ash accumulation will have been constructed and operated to minimize potential release of ash pond fluids to groundwater. In addition, the fluid accumulation within Ash Ponds 1S and 1N, which will no longer accumulate ash,

will be managed to within one foot of the bottom of each pond to further minimize potential release of ash pond fluids from these units. Any residual groundwater impacts potentially associated with prior ash pond leakage will naturally attenuate through the groundwater system under monitored conditions within the established GMZ with eventual discharge to the adjoining Des Plaines River.

Describe how the selected remedy will minimize any threat to public health or the environment.

The existing conditions do not pose a threat to public health since the impacts are limited to within the property boundary, there are no groundwater use receptors and the ponds are located within a fenced property with 24-hour security controlled access. Any potential impacts to the environment will be minimized and managed as discussed under item 4 above.

6. Describe how the selected remedy will result in compliance with the applicable groundwater standards.

Once Ash Pond 2S is relined with an HDPE liner and the fluid level within Ash Ponds 1S and 1N is reduced to within no more than one foot of the pond bottoms, the ash collection system will have been constructed and operated to minimize potential release of ash pond fluids to groundwater (i.e., the ash ponds as a potential source of groundwater impacts will be eliminated). Any residual groundwater impacts potentially associated with prior ash pond leakage will naturally attenuate through the groundwater system under monitored conditions within the established GMZ and/or discharge to the adjoining Des Plaines River immediately west of the ash ponds.

 Provide a schedule for design, construction and operation of the remedy, including dates for the start and completion.

The construction window for relining of Ash Pond 2S will occur from June 14, 2013 through September 2, 2013. Dredging will occur from June 14, 2013 through July 28, 2013. At this time liner installation is anticipated to occur in August 2013.

The dewatering system for Ash Ponds 1S and 1N is anticipated to be completed between July 14, 2013 and September 2, 2013.

A more detailed schedule is being provided under separate cover with the Application for Construction Permit to implement the remedy.

8. Describe how the remedy will be operated and maintained.

Upon completion of construction activities, Midwest Generation will develop and submit an Operation and Maintenance (O&M) Plan to the IEPA. The O&M Plan

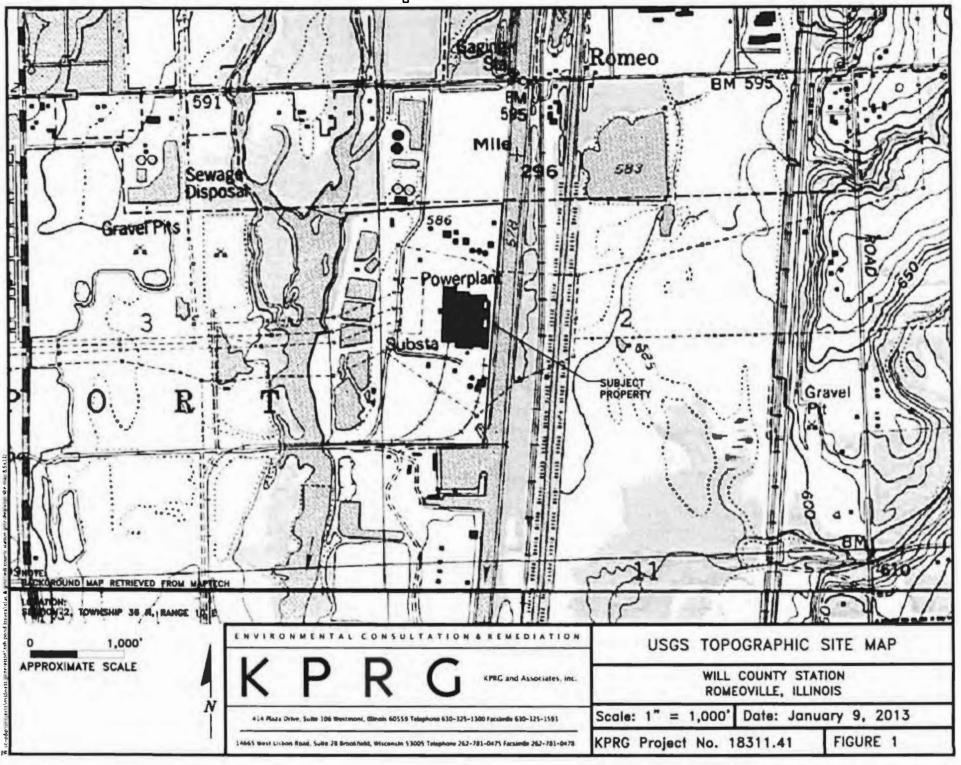
will be based on manufacturer and installer recommendations. It will include procedures for liner and dewatering system inspections, inspection frequency, documentation requirements and what corrective measure procedures are to be implemented, if necessary.

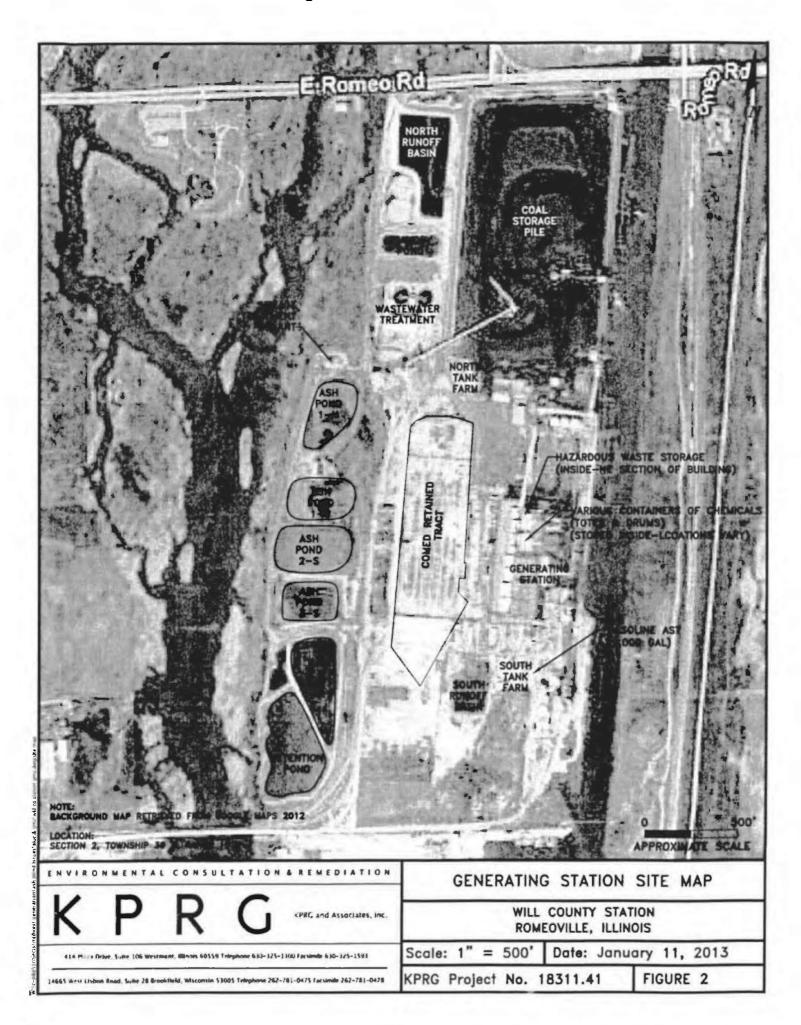
- 9. Have any of the following permits been issued for the remediation?
 - a. Construction or Operating permit from the Division of Water Pollution Control. Yes X No

This permit submittal is currently under review by IEPA.

- b. Land treatment permit from the Division of Water Pollution Control.

 Yes No X If the answer to this question is "yes", identify the permit number.
- c. Construction or Operating permit from the Division of Air Pollution Control. Yes No X If the answer to this question is "yes", identify the permit number.
- 10. How will groundwater at the facility be monitored following completion of the remedy to ensure that the groundwater standards have been attained?

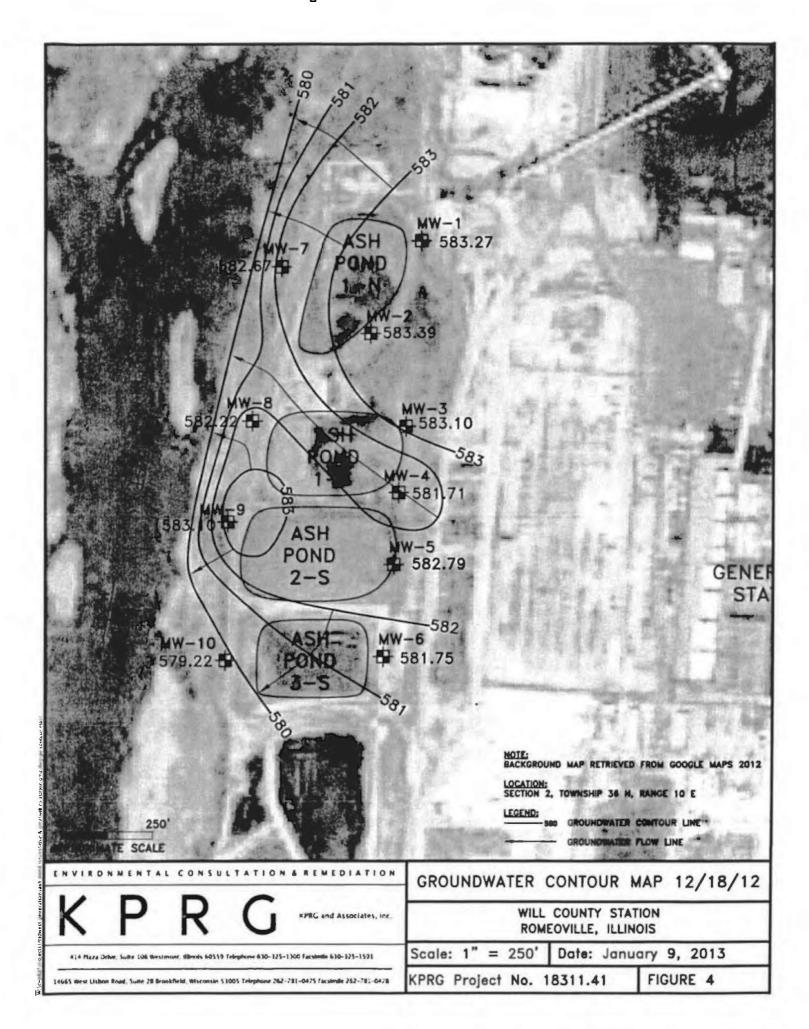

There are currently 10 monitoring wells surrounding Ash Ponds 1S, 2S, 3S and 1N (see Figure 3 in Attachment 2A). As required under Item 5 (d) of the CCA, these wells will continue to be monitored on a quarterly basis for constituents listed in 35 IAC 620.410(a) and (d), with the exception of radium 226/228. The monitoring data will be reported to IEPA within 30 days of the end of each quarter. In addition, an updated groundwater potentiometric surface map will be provided with each quarterly submittal. IEPA, upon written request, may approve a reduction in the frequency and scope of the sampling program in the future. Upon the IEPA's approval, the approved changes in the frequency and scope of the monitoring program shall be implemented.

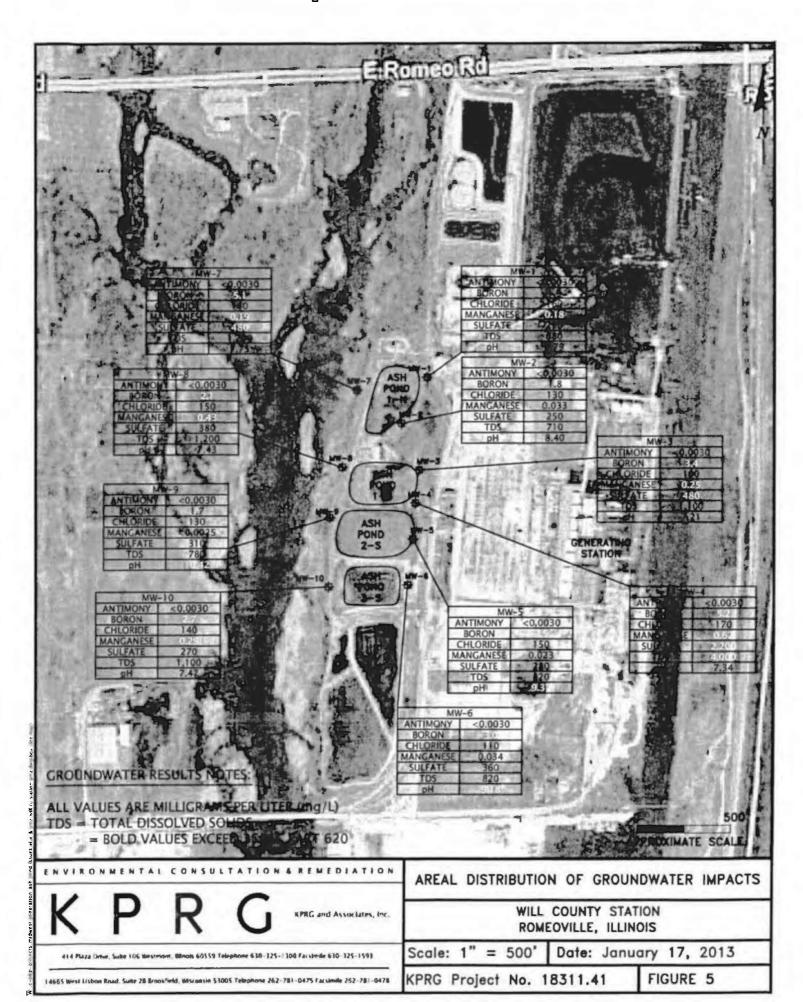

Based on my inquiry of those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true and accurate and confirm that the actions identified herein will be undertaken in accordance with the schedule set forth herein.

Will County Generating Station	The charles
Facility Name	Signature of Owner/Operator
Romeoville, IL	Midwest Generation) LLC
Location of Facility	Name of Owner/Operator
ID No. 6283	January 17, 2013
EPA Identification Number	Data

(Source: Amended at 36 Ill. Reg. 15206, effective October 5, 2012)

ATTACHMENT 2A
Figures


4665 West Lisbon Road. Suite 28 Brookfield, Wisconsin 53005 Telephone 262-781-0475 Facsimile 262-781-0478


WILL COUNTY STATION ROMEOVILLE, ILLINOIS

Scale: 1" = 500' Date: January 9, 2013

KPRG Project No. 18311.41

FIGURE 3

ATTACHMENT 2B Summary Data Table Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Sample: MW-01	Date	12/13/201	/2010	3/28/2011	1103	6/15/2011	1103	9/15/2011	1102	12/8/2011	2011	3/16/	3/16/2012	/02/9	6/20/2012	9/24/2012	2012	12/18/2012	2012
Parameter	Lab Method	DIL	Result	D.L.	Result	DT	Result	D.L.	Result	D.L.	Resuit	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result
Animony	9950	0.000	ND.	0.00.0	NO	0.0030	OZ.	0.0030	ND	0.0030	0.0063	0.0030	ON	0.0000	QN	0,0030	QN	0.0036	ON
Arsenic	6020	0100:0	Q.V.	0.00.0	GN	0,0050	ON	0.0000	GN	0.0010	GZ.	0.0000	GN	0100'0	GN	0.0010	QN.	0.0010	g
Barrum	6020	0.0025	0.050	0.0025	0.041	0.0025	940.0	0.0025	0.038	0.0025	0.033	0.0625	0.033	0.0025	0.039	0,0025	0.035	0.0025	0.034
Beryllum	6020	0.000	QN	0,000	Q.	0190'0	QN	0,0000	ND	0.0010	QZ	0.0010	QN	0.000.0	ND	0.0010	QN	0.000	QN
Boron	9050	9.25	1.8	0.050	0.1	0.050	1.8	0.050	1.7	0.050	1.6	0.25	1.5	0.50	2.1	0.25	61	0.50	1.9
Cadmum	6020	0.00000	QN	0.00050	GN	0.00050	QN	0.00050	GN	0.00050	SN	0.00050	ND	0.0000.0	gN	0.00050	GN	0.00050	S
Chlorde	9251	10	110	10	210	10	110	10	120	10	140	10	190	0.1	170	10	120	10	166
Chromium	6020	0.0050	QN	0,0050	ND	0.025	QN	0.0050	Q.	0.00050	S	0,0050	ND	0.0050	GN	0.0050	QN	0.0050	QN
Cobsit	6030	0.0010	6,0011	0,000,0	QN	0,0050	ON	0.000.0	ON	010000	QN	0.0010	ND	0.0010	ND	0.0010	QN	0.0010	Q.
Copper	6020	0.0020	gv	0.0020	ND	0.010	GN	0.0020	QN	0.0020	GN.	0.0020	GN	0.0020	ND	0.0020	GN	0.0020	Ž
Cyanide	9014	0,00	GN	0.010	QN	0.010	CZ	0.010	GZ	0.0.0	GN	0.010	QN	0.010	Z	0.010	ND	0.010	2
Fluoride	SM 4580 F.C.	01.0	17.0	01.0	59'0	0.10	0.53	01.0	71.0	0.10	673	01.0	69.0	0.10	6.77	0.10	0.86	0.10	0.86
front	6020	01.0	gN	0.10	GN	0.50	QN	0.10	0.11	0.10	0.11	01.0	ND	01.0	0.33	0.10	0.33	01.0	0.20
Load	6020	0.00050	GN	0.00050	GN	0.00050	GN	0.00050	Q.	0.00050	QN	0.00050	GN	0.00050	QN	0.00050	ND	0.00050	N
Manganese	6020	0.0025	0.20	0.0025	0.15	0.013	0.22	0.0025	0.16	0.0025	0.17	0.0025	0.16	0.0025	0.16	0.0025	0.15	0.0025	0.18
Mercury	7470A	0.00020	QN	0.00020	ND	0.00020	ND.	0.00020	GN	0.00020	QN	0,00020	ND	0.00020	Q.	0.00020	ND	0.00020	ND
Nickel	6020	0.0020	0.0046	0.0020	0.0038	0.010	O.	0.0020	0.0029	0.0020	0.0040	0.0020	0.0042	0.0020	0.0041	0.0020	0.0043	0.0020	0.0052
Nimogen/Nimite	Nurugen Calc	01.0	QN	01'0	17	01.0	0.73	0.10	0.33	01.0	1.4	01.0	2.2	0.10	0.61	01.0	0.25	0.10	3
Nitrogen/Nurate, Nitrite	SM 4500 ND3 F	0.10	NB	0.10	1.1	0.10	0.73	0.10	0.37	01.0	1.4	0.20	2.2	0,10	19'0	0.10	0.25	01.0	1.5
Nitrogen Nitric	SM 4500 NO2 B	0.020	ON	0,020	Q.	0.020	ND	0.020	0.0H2	0.020	QN	0.020	ND	0.020	ND	0.020	O.V.	0.020	ND
PH	Obsamed in field	Y.	7.85	N.	8.08	N.	7.28	×z	7.57	Y.Y	7.16	X.X	7.84	N.	7.55	V.V.	7.70	NA	179
Seleminn	6020	0.0025	gN	0.0025	QN	0.013	ON	0.0025	0.0053	0.0025	0.0025	0.0025	0.0033	0.0025	0.0040	0.0025	QN	8.0025	N
Silver	6020	0.00050	QN	0.00050	GN	0.00050	ND	0.000050	ON	0.00050	GN	0.00050	ND	0500070	GN	0.00050	ND	0.00050	GN
Sulfate	9038	100	530	001	390	100	280	95	320	100	270	100	430	100	390	100	390	100	290
Thushinm	6020	0.0020	ND	0.0020	QN	0,0020	ND	0.0020	ND	0.0020	Q.	0,0026	N.	0.0020	QN	0.0020	ND	0.0020	ND
Total Dissolved Solids	SM 2540C	10	1100	10	1300	10	1100	.01	760	10	770	10	016	91	056	10	790	-10	SNG
Zinc	6020	0.020	QN	0.020	QN	0.10	ND	0.020	GN	0.020	SZ	0.020	ON	0.020	QN	0.020	0.040	0.020	ND

DL - Detection limit ND - Non-detect NA - Not Applicable

cref Lab Mehad D.L. Reads D.L. Reads D.L. Reads D.L. Reads D.L. Reads D.L. Reads D.D. Reads D.D. Reads D.D. Reads D.D. Reads D.D. Reads D.D. D.D.D	Sample: MW-02	Date	12/13	12/13/2010	3/28/2011	2011	6/15/2011	1103	9/15/2011	1102	12/8/2011	2011	3/16/	3/16/2012	/02/9	6/20/2012	9/24/2012	2012	171	12/18/2012
Control Cont	Parameter	Lab Method	D.L.	Result	D.L.	Result	TO	Result	D.L.	Result	DT	Result	DT	Result	-TQ	Result	D.L.	Result	DI	Result
Marie Mari	Antimbony	6020	0.0030	ND.	0.0030	ND	0.015	ND	0.0030	0.0073	0.0030	0.017	0.0030	ON	0.0030	av	0.0030	GN	0.0030	GN
cel230 0.00124 0.0041 N.D. 0.0013 0.0083 </td <td>Arienie</td> <td>6020</td> <td>0.0010</td> <td>0.0052</td> <td>0.0010</td> <td>0.0032</td> <td>0.0050</td> <td>ND</td> <td>0.0010</td> <td>0.0080</td> <td>0.0010</td> <td>0.0058</td> <td>0.0000</td> <td>0.0048</td> <td>0.0010</td> <td>0.0044</td> <td>0.0000</td> <td>0.0071</td> <td>0.0010</td> <td>0.0046</td>	Arienie	6020	0.0010	0.0052	0.0010	0.0032	0.0050	ND	0.0010	0.0080	0.0010	0.0058	0.0000	0.0048	0.0010	0.0044	0.0000	0.0071	0.0010	0.0046
6020 0.0010 ND 0.0010 <	Заглит	65050	0.0025	0.061	0.0025	0.068	0.013	890'0	0.0025	0.048	0.0025	9600	0.0025	850'0	0.0025	0.062	9,0025	0.050	0.0025	0.051
6020 0.25 1.8 6.25 1.7 0.050 2.3 0.050 2.3 0.050 2.3 0.050 2.3 0.050 2.3 0.050 ND 0.00050 ND	3eryfhum	6020	0.0010	Q	0,0010	ND	0.0000	QN	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	010010	QN	0.0010	S
Part	Boron	6020	0.25	1.8	0.25	1.7	0.050	2.3	0.050	2.3	0.050	1.7	0.25	1.7	0.50	2.0	0.25	222	0.50	1.8
120	Cadmium	6020	0.00050	gN	0.00050	ND	0.0025	ON	0.00050	ND	0.00050	GN.	0.00050	GN	0.00050	QN	0.00050	Q.	0.00050	Ŷ.
Head	Chlonde	1526	01	110	10	250	10	180	10	110	QI	120	10	140	10	150	10	110	10	130
60200 0.00010 ND 0.00050 ND 0.0010	Съсмишт	6020	0.0058	ON	0,0050	ND	0.025	QN	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	ND	05000	Q.
SAM 4590 FC 0.10	Cobalt	0709	0.0010	QN	0.00.0	QN	0.0050	QX	0.0010	ND	0.0010	ND	0.0010	QN	0.0010	QN	0.0010	ND	0,0010	QN
de Onl 1 ND 0.010 ND 0.00 ND 0.00 <th< td=""><td>Copper</td><td>6020</td><td>0.0020</td><td>QN</td><td>0,000</td><td>ON</td><td>0.010</td><td>GN</td><td>0.0020</td><td>ON</td><td>0.0020</td><td>ON</td><td>0.0020</td><td>ND</td><td>0.0020</td><td>ON</td><td>0.0020</td><td>Q</td><td>0.0020</td><td>Q</td></th<>	Copper	6020	0.0020	QN	0,000	ON	0.010	GN	0.0020	ON	0.0020	ON	0.0020	ND	0.0020	ON	0.0020	Q	0.0020	Q
de. SM 4500 FC 0.10 0.62 0.10 0.50 0.10 0.50 ND 0.10 ND 0.50 ND 0.10 ND 0.50 ND 0.10 ND 0.10 ND 0.50 ND 0.10	Cyanide	9014	0.010	QV	0.010	GN	0.010	CZ	0.010	GN	0.010	GN	0.010	GN	0100	ND	0.010	g	0.000	GN
ansect 6020 0.10 ND 0.50 ND 0.10 ND 0.60 ND 0.00 ND 0.0	Fluoride	SM 4500 F C	01.0	0.62	0.10	0,50	0.10	0.42	0.10	0.59	0.10	0.59	01.10	0.46	0.10	0.55	9.10	0.71	0.10	0.00
answer 6020 0.00050 ND <	fron	DZON	0.10	ND	01.0	Q.	0.50	ND	01.0	QN	0.10	ND	01.0	ND	0.10	QN	01.0	ND	0.10	ND
support 6020 0.0025 0.032 0.043 <	Lead	N020	0.000050	Q.	0.00050	QN	0.00030	ON	0.00050	NIS	0.00050	GN	0.00050	QN	0.00050	ON	0.000050	ON	0.00050	g
1	Manganese	6020	0.0025	0.032	0,0035	0.032	0.013	0.043	0.0025	0.036	0.0025	0.031	0.0025	0.031	0.0025	0.038	0.0025	0.029	0,0025	0.033
1	Mercury	7470A	0.00020	ND	0.00020	ND	0.00020	QN	0.00020	ND	0.00020	QN	0.00020	ON	0.00020	ND	0.00620	ND	0.00020	ND
gen/Nitrate Nitrogen Cade 0.10 ND 0.00 ND 0.10 ND 0.00 ND	Sickel	6020	0.0020	QN	0.0020	ND	0.010	ND	0.0020	ND	0.0020	ND	0,0020	ND	0.0020	ND	0.0020	ND	0.0020	QN
con Nitrate, Nature SM 4560 NO3 F 0.10 ND 0.00 N	Nitrogen/Nitrate	Nitrogen Cale	0.10	QN	0.10	ND	0.10	ND	01.0	ND	0.10	ND	0.10	ND	0.10	QN	0.10	GN	0.10	OZ.
gen/Nirule SM 4500 NO 2 B 0.020 ND 0.000 ND <td>Nitrogen Nitrate, Nitrate</td> <td>SM 4500 NO3 F</td> <td></td> <td>ND</td> <td>01.0</td> <td>ND</td> <td>0.10</td> <td>GN</td> <td>0.10</td> <td>ND</td> <td>0.10</td> <td>ON</td> <td>0.10</td> <td>ND</td> <td>0.10</td> <td>QN</td> <td>0.10</td> <td>Q</td> <td>0.10</td> <td>Q</td>	Nitrogen Nitrate, Nitrate	SM 4500 NO3 F		ND	01.0	ND	0.10	GN	0.10	ND	0.10	ON	0.10	ND	0.10	QN	0.10	Q	0.10	Q
num 6020 NA 8.62 NA 8.62 NA 8.62 NA 8.11 NA 2.80 num 6020 0.0025 ND 0.0025 ND 0.003 ND <td>Nitragen Nitrate</td> <td>SM 4500 NO2 B</td> <td></td> <td>ND</td> <td>0.020</td> <td>QN</td> <td>0.020</td> <td>ND</td> <td>0,020</td> <td>ND</td> <td>0.020</td> <td>ND</td> <td>0.020</td> <td>ND</td> <td>0.020</td> <td>ND</td> <td>0.020</td> <td>Q</td> <td>0.020</td> <td>Q.</td>	Nitragen Nitrate	SM 4500 NO2 B		ND	0.020	QN	0.020	ND	0,020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	Q	0.020	Q.
name 64/24 G 0025 ND G 0043 ND G 013 ND G 0035 ND G 0035 ND G 0035 ND G 00035 ND G 000	Pel	Obtained in field	NA	X 62	N.A	8.62	N.A.	8.00	4 X	8.11	NA	7.80	N.	8.34	VV	8.23	N.	8.33	XX	8.40
Let 9038 Lion 430 100 280 50 400 50 310 200 220 um 90238 Lion 430 100 280 50 400 50 310 50 220 Dbsvolved Suikls 6620 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 650 200 ND 650 ND 650 ND 650 ND 650 ND ND 6000 ND 0.000	Scientum	6020	0.0025	ND	0.0025	QN	0.013	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	QN	0.0025	ON
Let 9038 100 450 100 280 50 460 50 330 50 220 Burn 8020 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND Desirohed Suiks SNI 2540C 10 870 10 970 10 900 10 720 10 650 Ad3-0 0.020 ND 0.030 ND 0.030 ND 0.030 ND 0.030 ND	Silver	6020	0.00050	ND	0.00050	GN	0.0025	QN	0.00050	ND	0.000050	ND	0.00050	GN	0.00050	QN	0.00050	Q	0.00050	QV C
Desorbed Solids States (10 870 110 870 110 970 110 800 110 820 ND 6000	Sulfate	9038	100	430	100	280	90	100	96	330	90	220	80	330	100	340	90	280	90	250
Desorbed Suids SM 254NC 10 870 10 970 10 10 900 10 720 10 650	Thalliam	6020	0.0020	QN	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	QN	0.0020	QN	0.0020	N.
GN 0500 GN 0500 GN 010 GN 0500 GN 0500	Total Dissolved Sands	SM 2540C	10	870	10	026	10	900	10	720	01	650	10	810	10	850	10	069	92	710
	Zinc	6620	0:050	ND	0.020	ON	0.10	ON	0.020	GN	0.020	GN	0.020	QN	0.020	GN	0.020	GN	0.020	G.

Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Notes, Grounalwater sample madyzed at TestAmerica laboratory
Well screen depth is from 12.0 to 22.0 feet below ground surface.
Sample collected using low-flow technique.
All values are an mg.L (norm).

DL - Detection limit ND - Non-detect NA - Not Applicable

extons land " - Denotes instrument related QC exceeds the control lumis Argelectal Argelechele

Table I. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Sample: MW-03	Date	12/13	2010	3/28/	2011	6/15/	2011	9/15/	2011	12/8/	2011	3/16/	2012	6/20/	2012	9/24/	2012	12/18	/2012
Parameter	Lab Method	DL	Result	D.L	Result	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result
Antimony	5020	0.0030	ND	0.0030	ND	0.015	ND	0,0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND
Arsenic	8020	0.0010	0.0020	0.0010	0.0024	0.0050	ND	0.0010	0.0025	0.0010	0.0018	0.0010	0.0017	0.0010	0.0020	0.0010	0.0026	0,0010	0.0019
Harium	6020	0.0025	0.084	0.0025	0.086	0,013	0.071	0.0025	0.079	0.0025	0.083	0.0025	0.075	0.0025	0.12	0.0025	0.085	0.0025	0.079
Beryllian	6020	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND								
Boron	6020	0.25	2.7	0.25	2.4	0.050	2.6	0.050	3.3	0.050	2.8	0.25	2.7	0.50	3.3	0.25	3.9	0.50	3.4
Cadmium	6020	0.00050	ND	0.00050	ND	0.0025	ND	8.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND
Chloride	9251	2.0	54	ta	250	10	100	10	130	10	100	10	95	10	88	10	96	10	100
Chromium	8020	0.0050	ND	0.0050	ND	0.025	ND	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	ND
Cobalt	6020	0.0010	ND	0.0010	0.0022	0.0050	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND
Copper	6020	0.0020	ND	0.0020	ND	0.010	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND
Cyanide	9014	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND								
Fluoride	SM 4500 F C	0.10	0.50	0.10	0.37	0.10	0.36	0.10	0.45	0.10	0.39	0.10	0.38	0.10	0.36	0.10	0.45	0.10	0.44 ^
fron	6020	0.10	0.37	0.10	0.57	0.50	ND	0.10	0.26	0.10	0.19	0.10	0.20	0.10	0.34	0.10	0.21	0.10	D.20
Lead	6020	0,00050	ND	8.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND
Manganese	6020	0.0025	0.34	0.0025	0.31	0.013	0.34	0.0025	0.26	0.0025	0.29	0.0025	0.27	0,0025	0.37	0.0025	0.24	0.0025	0.25
Mercury	7470A	0.00020	ND	0.00020	ND	0.00020	ND	0,00020	ND	0.00020	ND	0.00020	ND	0.00020	ND	0.00020	ND	0.00020	ND
Nickel	6020	0.0020	0.0054	0.0020	0.0037	0.010	ND	0.0020	0.0061	0.0020	19.0053	0.0020	0.0052	0.0020	0.0051	0.0020	0.0069	0.0020	0.0079
Nitrogen/Nitrate	Nitrogen Cale	0.10	ND	0.10	ND	0.10	0.81	0.10	ND	0.10	0.54	0.10	ND	0.10	0.18	0.10	ND	0.10	ND
Nitrogen/Nitrate, Nitrite	SM 4500 NO3 F	0.10	ND	0.10	ND	0.10	0.81	0.10	ND	6.10	0.54	0.10	ND	D.10	0.18	0.10	ND	0.10	ND
Narogen Natate	SM 4500 NO2 B	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND								
рН	Obtained in field	NA	7.21	NA	7.72	NA	7.01	NA	7.18	NA	6.55	NA	7.24	NA	6.79	NA	7.12	NA	7.21
Selenium	6020	0.0025	ND	0.0025	ND	0.013	ND	0.0025	0.0033	0.0025	ND	0.0025	ND	0.0025	ND	0.0025	0.0040	0.0025	ND
Silver	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND
Sulfate	9038	100	330	58	270	30	240	100	250	100	280	100	320	100	300	100	440	100	480
Thallium	6020	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND								
Total Dissolved Solids	SM 2540C	10	940	10	1000	10	990	10	1000	10	930	10	1000	10	1400	10	1100	10	1100
Zinc	6020	0.020	ND	0.020	ND	0.10	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND

Notes: Groundwater sample analyzed at TestAmerica laboratory.
Well screen depth is from 7.0 to 17.0 feet below ground surface.
Sample collected using low-flow technique. All values are in mg L (ppm)

DL - Detection limit ND - Non-detect NA - Not Applicable

- Denotes instrument related QC exceeds the control limits

Sample: MW-04	Date	12/13	12/13/2010	3/28/	3/28/2011	6/15/2011	2011	9/15/	9/15/2011	12/8/2011	2011	3/16/2012	2012	6/20/2012	2012	9/24/2012	2012	12/18/2012	2012
Parameter	Lab Method	DC	Result	D.L.	Result	DT	Result	TO	Result	DT	Result	T'G	Result	D.L.	Result	DL	Kesult	D.L.	Result
Antimony	6020	0.0030	ND	0.0030	ND	0,015	QN	0.0030	QN	0.0030	ON	0.0030	QN	0.0030	QN	0.0030	QN	0.000.0	ON
Arsente	6020	0.0016	0,0027	0.0010	0.0016	0.0050	QN	0.0010	0.0041	0.0010	0.0016	0.0010	0.0015	01000	0.0028	0.0010	0.0044	0.0020	0.0033
Barium	6020	0.0025	0.068	0.0025	0.062	0.013	0.050	0.0025	0.050	0.0025	0.043	0.0025	0.036	0.0025	0.041	0.0025	0.041	0.0050	0.037
Berythum	6020	0.000.0	ND	0.0010	ON.	0.0010	QN	0.0010	ND	0.0010	ON	0.0010	ND	0.0010	QN	0.0010	ND	0.0020	ND
Boron	6020	0.25	3.7	0.25	3.3	0.050	3.6	0.050	4.3	0.050	3.0	0.25	4.0	0.50	5.3	0.25	6.2	0.10	5.2
Cadmium	6020	0.00050	CN	0.00050	QN	0.0025	QN.	0.00050	ON	0.00050	GN	0,00050	GN	0.00030	QN	0.00056	gx	0.0016	GN
Chlonik	9251	10	120	10	190	10	130	10	170	10	051	10	150	01	140	10	170	91	176
Chromium	6020	030030	QN	0,0050	ND	0.025	ND	0.0050	QN	0.0050	Q.	0.0050	ND	0.0050	QN	0.00.0	ND	0.010	ND
Cobair	6030	0.0010	0.001	0.00.0	ND	0.0050	ND	0.0010	0.0012	0.0010	ND	0.0010	QV	0.0000	ND	0.000.0	ND	0.0020	ND
Copper	6020	0.0020	QN	0.0020	GN	0.010	CZ	0.0020	ON	0.0020	GN.	0.0020	QN	0,0020	ND	0.0020	ND	0.0040	GN
Cyanide	+106	0.010	QN	0.010	GN	0.010	CN	0.010	ON	0.010	GN	0.010	GN	0.010	ND	0.010	ND	0.010	CN
Fluorale	SM 4500 F C	0.10	0.52	01.0	61.0	0.10	0.48	0.10	0.53	01.0	0.55	0.10	0.50	0.30	0.62	0.10	0.68	0.10	0.63
Iron	6020	0.10	0.83	0,10	92.0	0.50	0.70	01.0	1.2	0.10	0.64	0.10	0.53	01'0	56.0	0.10	0.83	0,20	1.2
Lead	6020	0.00000	QN	0.00050	QN	0.00050	QN	0.00050	ND	0500000	Q	0.00050	GN	0.0000.0	QN	0.00050	ND	0.0010	ON
Manganese	6620	0.0025	0.52	0.0025	0.58	0.013	0.70	0.0025	1.0	0.0025	0.62	0.0025	09'0	0.0025	02'0	0.0025	66.0	050000	0.62
Mercury	7470A	0.00020	QX	0.00020	ND	0.00020	ND	0.00020	Q	0.00020	QN	0,00020	QN	0,00020	ND	0.00020	ND	0.00020	ND
Nekel	6020	0.0020	0.0048	0.0020	0.0041	0.010	QN	0.0020	0.0051	0.0020	0.0047	0.0020	D. 00-13	0.0020	0.0047	0.0020	0.0046	0.0040	0.0050
Nittogen/Nitrate	Natrogen Cale	01.0	QN	0.10	QN	0.10	61.0	01.0	ND	01:0	0.37	01.0	0.45	01.0	QN	01.0	QN	0.10	QN
Nitrogen Natrate, Narite	SM 4500 NO3 F	0.10	GN	01.0	ON	01'0	61.0	01.0	QN	0.10	0.37	01.0	0.45	0.10	QN	0.10	ND	01.0	ND
Nimgen/Nime	SM 4500 NO2 B	0.020	QN	0.020	QN	0.020	ON	0.020	ND	0.020	QV	0.020	ND	0.020	ND	0.020	ND	0.020	N
pH	Obtained in field	××	737	VX	7.66	N.A	7.23	4 Z	7.21	N.	6.58	N.	72.7	4 Z	7.10	NA	7.29	NA	1.74
Selenium	6020	0.0025	QN	0.0025	0.0033	0.013	QN	0.0025	ND	0.0025	0.00%	0.0025	0.0067	0.0025	NO	0.0025	0.0026	0.000.0	Q.
Silver	6020	0,00050	ON	0.00050	Z.	0.0025	g	0.00050	QN	0.00050	ON	0.00050	GN	0.000050	CIN	0.00050	QN	0.0010	ND
Sulfare	9038	250	1500	800	1500	250	1600	10001	4800	200	1600	9009	2000	9005	2800	800	3200	200	2200
Thallnum	6020	0.0020	QN	0.0020	ND	0.0026	Q	0.0020	QN	0.0020	QX	0.0020	ND	0.0020	ON	0.0020	ND	0.0020	QN
Total Dissolved Solids	SM 2540C	10	2500	10	2600	10	2800	35	0009	13	3100	13	3700	25	4300	17	4400	17	4000
Zinc	6020	0.020	QN.	0.020	QN	0.10	GN	0.020	QN	0.020	GN	0.020	GN	0.020	ON	0.020	QV	0.040	ON

Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Table 1, Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Sample: MW-05	Date	12/13	/2010	3/28/	2011	6/15/	2011	9/15	2011	12/8/	2011	3/16/	2012	6/20/	2012	9/24/	2012	12/18	3/2012
Parameter	Lab Method	D1.	Result	D.L.	Result														
Antimony	6020	0.0030	ND*	0.0030	ND	0.015	ND	0.0030	NO	0.0030	ND								
Arsenic	6020	0.0010	0.0066	0.0010	0.0048	0.0050	ND	0.0010	0.0025	0.0010	0.0065	0.0010	0.0065	0.0010	0.0073	0.0010	0.0023	0.0010	0.0058
Barum	6020	0.0025	0.051	0.0025	0.060	0.013	0.067	0.0025	0.070	0.0025	0.061	0.0025	0.053	0.0025	0.040	0.0025	0.073	0.0025	0.045
Beryllian	6020	0.0010	ND																
Boron	6020	0.25	2.6	0.25	2.7	0.050	3.2	0.050	4.0	0.050	3.2	0.25	2.9	0.50	2.3	0.25	3.8	0.50	2.5
Cadmium	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND										
Chloride	9251	10	110	10	150	10	140	10	150	10	130	10	170	10	150	16	160	10	150
Chromiuni	6020	0.0050	ND	0.0050	ND	0.025	ND	0.0050	ND										
Cobalt	6020	0.0010	ND	0.0010	ND	0.0050	ND	0.0010	ND.	0.0010	ND								
Соррет	6020	0.0020	ND	0.0020	ND	0.010	ND	0.0020	ND										
Cyanide	9014	0.010	ND																
Fluoride	SM 4500 F C	0.10	0.41	0.10	0.40	0.10	0.46	0.10	0.49	0.10	0.38	0.10	0.42	0.10	0.59	0.10	0.44	0.10	0.47 ^
fron	6020	0.10	ND	0.10	ND	0.50	ND	0.10	ND										
Lead	6020	0.00050	ND	0.00050	ND	0.00050	ND	0.0005D	ND	0.00050	ND								
Manganese	6020	0.0025	0.0079	0.0025	0.0067	0.013	0.055	0.0025	0.13	0.0025	0.038	0.0025	0.032	0.0025	0.014	0.0025	0.073	0.0025	9.023
Mercury	7470A	0.00020	ND	0.00020	ND	0.00020	ND	0.00020	ND .	0.00020	ND								
Nickel	6020	0.0020	ND	0.0020	ND	0.010	ND	0.0020	0.0021	0.0026	ND	0.0020	ND	0.0020	ND	0.0020	0.0025	0.0020	0.6020
Nitroget/Nitrate	Nitrogen Colc	0.10	0.27	0.10	1.6	0.10	4.4	0.10	0.11	0.10	1.0	0.10	0,11	0.10	0.24	0.10	0.11	0.10	ND
Nitrogen/Nitrate, Nitrite	SM 4500 NO3 F	0.10	0.27	0.10	1.9	0.10	0.97	0.10	0.11	0.10	1.2	0.10	0.25	0.10	0.27	0.10	0.11	0.10	1.2
Nitrogen Nurite	SM 4500 NO2 B	0.020	ND	0.10	0.31	0.020	0.13	0.020	ND	0.020	0.17	0.020	0.14	0.020	0.031	0.020	ND	0.20	1.2
pH	Obtained in field	NA	9.58	NA	9.51	NA.	7.44	NA	7.38	NA	8.20	NA	9.30	NA	9.41	NA	7.54	NA.	9.37
Selentum	6020	0.0025	0.017	0.0025	0.014	0.013	0.016	0.0025	0.0080	0.0025	0.010	0.0025	0.0059	0.0025	ND	0.0025	0.017	0.0025	0.0079
Silver	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND	0.00050	ND.	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND
Sulfate	9038	100	580	100	570	100	540	130	690	100	500	100	370	100	410	100	540	100	280
Dallium	6020	0.0620	ND	0.0020	ND														
Total Dissolved Solids	SM 2540C	10	1000	10	1300	10	1400	10	1500	10	1000	10	1000	10	750	10	1100	10	820
Zinc	5020	0.020	ND	0.020	ND	0.10	ND	0.020	ND										

Notes: Groundwater sample analyzed at TestAmerica laboratory.

Well screen depth is from 9.0 to 19.0 feet below ground surface.

Sample collected using low-flow technique.

All values are in rig/1. (ppm).

DL - Detection limit ND - Non-detect NA - Not Applicable

-- Denotes instrument related OC exceeds the control limits

Sample: MW-06	Date	12/1	12/13/2010	3/28,	3/28/2011	6/15/2011	1102	9/15/2011	1102	12/8/2011	2011	3/16/2012	2012	6/20/2012	2012	9/24/2012	2012	12/18/	12/18/2012
Parameter	Lab Method	D.f.	Result	T'G	Result	DT	Result	D.L.	Result	D.L	Result	DT	Result	D.L.	Result	D.L.	Result	TO	Result
Antimony	6020	0.0030	ND	0,0030	ON	0.015	ND	0.0030	ON	0.0030	O.V.	0.0030	ON	0:0000	dN	0:0030	ND	0.00.0	gN
Arsense	6020	0.0010	81000	0.0010	0.0018	0.0000	GN.	0.0000	0.0031	0.0010	0.0022	0.0010	0.0022	0.0010	0.0021	0.000	0.0026	0.0010	0.0020
Barnini	6020	0.0025	0.050	0.0025	0,040	0.013	0.045	0.0025	11.041	0.0025	0.053	0.0025	0.044	0.0025	0.046	0.0025	0.054	0.0025	0.051
Beryllaun	6020	0.0010	Q.	0.0010	ND	0.0010	ND	0.0000	ND	0.0010	QN	0.0010	ND	0.000	dN	0.0010	QN	0.0010	ND
Bonn	6020	0.25	2.7	0.25	2.5	0.050	2.4	0.050	3.0	0.050	225	0.25	2.5	0.50	2.9	0.25	3.0	0.50	3.0
Сырныт	6020	0.00030	ON.	0.00050	ND	0.0025	QN	0.000050	ON	0.00050	GN	0,00050	QN	0.00050	QN	0.00050	ND	0.0000.0	QN
Chlonde	9251	01	120	91	210	91	150	IO	120	01	120	a	011	9	92	10	110	10	110
Chromium	0000	0.0050	gN	05000	QN	0.025	ND	0.0050	ND	0.0050	GN	05000	QN	0.0050	QN	05000	ND	0.0050	QN
Cobali	6020	0.0010	QN	0.0010	QN	0.0050	ND	0.0010	Q.	0.0010	ND	0.0000	QN	0.00.0	QN	0.0010	ND	0.0000	ND
Copper	6030	0.0020	NO	0.0020	GN	0.010	Q.	0.0020	ND	0.0020	ND	0.0020	QN	0.0020	QN	0.0020	ND	0.0020	GN
Cyanide	9014	0.010	OX	0.010	CN	0.010	GX	010'0	CN	0.010	dN	0.010	GN	0.00	QN.	0.010	ND	0.010	QN
Fluoride	SM4800 F.C.	6.10	0.85	0.10	0.88	01.0	62.0	0.10	76.0	01.0	0.77	0.10	99'0	0.10	18:0	0.10	ND	0.10	0.71
Iron	6020	0.10	ND	0.10	QN	08'0	ND	01.0	ND	0.10	QN	01.0	ND	0.10	ND	0.10	QN	0.10	ND
Lead	6020	0.00050	ND	0.00050	QN	0.00050	GIN	0.000050	QN	0.00050	ON	0.00050	QN	0.000050	ND	0.00000	QN	0.00050	ON
Manganese	90209	0.0025	0.073	0.0025	150'0	0.013	0,047	0,0025	0.024	0.0025	0.038	0.0025	0.029	0.0025	0.033	0.0025	0.038	0.0025	0.034
Mercury	7470A	0.00020	ND	0.00020	QN	0.00026	ND	0.00020	QN	0.00020	QN.	0.00020	ND	0.00020	GN	0.00020	QN	0.00020	ND
Nickel	6020	0.0020	ND	0.0020	ND	0.010	ND	0.0020	ND	0.0020	QN	0.0020	QN.	0.0020	ND	0.0020	QN	0.0020	0.0022
Nitrigen Nitrate	Namagen Cale	0.10	ND	0.10	QN	0.10	0.26	01.0	QN	0.10	Q	0.10	ND	0.10	Q	0.10	QN	0.10	ND
Narogen/Narae, Narie	SM 4500 NO3 F	0.10	NB	0.10	GN	0.10	0.10	0.10	QN	0.10	CIN	0.10	GN	01.0	ND	0.10	ND	0.10	ND.
Namgen Nitrite	SM 4500 NO2 B	0.020	ND	0.020	0,048	0,020	0.16	0.020	ND	0.020	ON	0.020	QN	0.020	0.052	0.020	0.026	0.020	ND
pH	Oblamed in field	Y	8.89	NA	9.65	N.A	927	NA NA	17.6	NA	8.82	NA	939	NA	10%	NA	9.17	NA	9.18
Selenum	6620	0.0025	0.0062	0.0025	0.0028	0.013	QN	0.0025	0.011	0.0025	ND	0.0025	ND	0.0025	0.0034	0.0025	0,014	0.0025	0.0057
Silver	6020	0.00050	ND	0.000050	GN	0,0025	QN	0.00050	ND	0.0000.0	GN	0.00050	QN	0.00050	QN	0,00050	ND	0,00050	ND
Sulfare	8606	100	900	100	240	100	970	100	420	100	440	100	380	100	450	100	550	100	360
Tallium	6020	0.0020	QN	0.0020	ND	0.0020	ND	0.0020	ND	0,0020	QN	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND
Total Dissolved Solids	SM 2540C	01	946	01	1100	10	1200	10	870	10	880	10	906	10	270	10	890	10	820
Zinc	6020	0.020	S	0.020	ND	0.10	QN	0.020	ND	0.020	QN	0.020	QN	0.020	QN	0.020	ON	0.020	QN

Table I. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Sample: MW-07	Date	12/13	2010	3/28/	2011	6/15/	2011	9/15/	2011	12/8/	2011	3/16/	2012	6/20/	2012	9/24/	2012	12/18	/2012
Parameter	Lab Method	DL	Result	D.L.	Result	D.I.	Result	DL	Result	D.L.	Result								
Antimony	6020	0.0030	ND	0.0030	ND	0.015	ND	0.0030	ND										
Arsenic	6020	0.0010	0.0040	0.0010	0.0037	0.0050	ND	0.0010	0,0042	0.0010	0,0042	0.0010	0.0041	0.0010	0.0039	0.0010	0.0049	0.0010	0.0034
Harnam	6020	0.0025	0.045	0.0025	0.067	0.013	0.076	0.0025	0.082	0.0025	0.082	0.0025	0.069	0.0025	0.057	0.0025	0.086	0.0025	0.044
Beryllium	6020	0.0010	ND																
Boron	6020	0.25	4.7	1.0	5.0	1.0	5.7	0.25	3.4	0.050	5.0	0.25	5.1	0.50	5.6	0.25	5.5	0.50	5.1
Cadmium	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND										
Chloride	9251	10	160	10	140	10	140	10	160	10	150	10	130	10	120	10	150	10	140
Chromium	6020	0.0050	ND	0.0050	ND	0.025	ND	0.0050	ND										
Cobalt	6020	0.0010	ND-	0,0010	ND	0.0050	ND	0.0010	ND	0.0010	ND	0.0010	ND	0,0010	ND	0.0010	ND	0.0010	ND
Copper	6020	0,6020	ND	0,0020	ND	0,010	ND	0,0020	ND	0.0020	ND								
Cyanide	9014	0.010	ND	0.010	ND	0.010	0.016	0.010	ND	0.010	0.017								
Fluoride	SM 4500 F.C	0.10	0.96	0.10	0.77	0.10	0.71	0.10	0.82	0.10	0.86	0.10	0.76	0.10	0.83	0.10	ND	0.10	0.69 *
Iron	6020	9.10	0.23	0.10	0.18	0.50	ND	0.10	0.37	0.10	0.50	0.10	0.57	0.10	0,60	0.10	0.51	0.10	0.62
Lead	6020	0.00050	ND.	0.00050	ND	0.00050	ND	0.00050	ND.	0.00050	ND								
Manganese	6020	0.0025	0.12	0.0025	0.11	0.013	0.15	0.0025	0.18	0.0025	0.20	0.0025	0.20	0.0025	0.19	0.0025	0.19	0.0025	0.19
Mercury	7470A	0.00020	ND																
Nickel	6020	0.0020	0.0029	0.0020	0.0023	0.010	ND	0.0020	0.0024	0.0020	0.0021	0.0020	ND	0.0020	0.0020	0.0020	ND	0.0020	ND
Nitrogen Nitrate	Nitrogen Cale	0.10	ND	-0.10	ND	0.10	ND	0.10	ND	0,10	ND	0.10	ND	0.10	ND	0.10	ND	0.10	ND
Nitrogen Nitrate, Nitrite	SM 4500 NO3 F	0.10	ND	0,10	ND	0.10.	ND	0.10	ND*	0.10	NO-								
Nitrogen Nitrite	SM 4500 NO2 B	0.020	ND	0.020	0.077	0.020	0.035	0.026	0.050	0.020	0,043	0.020	ND	0.020	ND	0.020	ND	0.020	ND
pH	Obtamed in field	NA.	X.61	NA	8.79	NA.	8.13	NA	7.91	NA	7.69	NA.	8.16	NA	7.92	NA	к.02	NA	7.75
Selemum	6020	0.0025	ND	0.0025	ND	0.013	ND	0.0025	ND										
Silver	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND										
Sulfate	9038	160	610	250	650	200	1000	100	710	130	710	100	770	100	670	100	600	100	480
Thallaum	6020	0.0020	ND																
Total Dissolved Solids	SM 2540C	10	1300	10	1500	10	1600	10	1400	10	1300	10	1400	10	1300	10	1200	10	1200
Line	6020	0.020	ND	0.020	ND	0.10	ND	0.020	ND										

Notes: Croundwater sample analyzed at TestAmerica laboratory. Well screen depth is from 7.5 to 17.5 feet below ground surface. Sample collected using low-flow technique. All values are in ring/L (ppm).

DL - Detection limit

ND - Non-detect

NA - Not Applicable

- Denotes instrument related QC exceeds the control limits

Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Sample: MW-08	Date	12/13	/2010	3/28/	2011	6/15/	2011	9/15/	2011	12/8/	2011	3/16/	2012	6/20/	2012	9/24/	2012	12/18	/2012
Parameter	Lab Method	D.L.	Result	DL	Result	DL	Result	D.L.	Result	D.t.	Resul								
Antenony	6020	0.0030	ND*	0.0030	ND	0.015	ND	0.0030	ND	0.0030	ND	0,0030	ND	0.0030	ND	0.0030	ND	0.0030	ND
Arsenic	6020	0.0010	0.006?	0.0010	0.0059	0.0050	0.0082	0.0010	0.014	0.0010	0.012	0.0010	0.0066	8.0010	0.013	0.0010	0.018	0.0010	0.0081
Вагит	6026	0.0025	0.069	0.0025	0.089	0.013	0.085	0.0025	0.099	0.0025	0.078	0.0025	0.066	0.0025	0.074	0.0025	0.090	0.0025	0.079
Beryllium	6020	0.0010	ND	0100.0	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0016	ND	0.0010	ND	0.0010	ND
Boron	6020	0.25	1.7	0.25	1.3	0.050	1.7	0.050	2.3	0.050	1.9	0,25	1.5	0.50	2,0	0.25	2.6	0.50	2.1
Cadmium	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00056	ND	0.00050	ND
Chloride	9251	10	9).	10	270	10	200	10	160	10	130	10	160	10	160	10	150	10	150
Chromium	6020	0.0050	ND	0.0050	ND	0.025	ND	0.0050	ND	0.0050	ND	0.010	ND	0.0050	ND	0.0050	ND -	0.0050	ND
Cobait	6026	0.0010	ND	0,0010	ND	0.0050	ND	0.0010	ND	0.0010	ND	0.0020	ND	0.0010	ND	0.0010	ND	0.0010	ND
Copper	6020	0.0020	ND	0.0020	ND	0,016	ND	0.0026	ND	0.0020	ND								
Cyanide	9014	0.010	ND	0.010	ND	0.010	ND	0.010	ND	0,010	ND	0.010	ND	0.010	ND	0.010	ND	0.010	ND
Fluoride	SM 4500 F C	0.10	0.61	0.10	0.55	9.10	0.57	0.10	0.64	0.10	0.61	0.10	0.52	0.10	0.60	0.10	D 65	0.10	0.58 ^
Iron	6020	0.10	0.48	0.10	0.38	0.50	0.76	0.10	0.46	0.10	0.68	0.20	ND	0.10	0.58	0.10	0.66	0.10	0.50
Lead	6020	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0,00050	ND	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	ND
Manganese	6020	0.0025	0.33	0.0025	0.44	0.013	0.47	0.0025	0.45	0.0025	0.40	0.0050	ND	0.0025	0.36	0.0025	0.41	0.0025	0.43
Mercury	7470A	0.00020	ND																
Nickel	6026	0.0020	ND	0.0020	ND	0.010	ND	0.0020	0.0034	0.0020	0.0020	0.0040	ND	0.0020	0.0022	0.0020	0.0035	0.0020	0.0033
Nitrogen/Nitrate	Nitrogen Calc	0.10	ND	0.10	0.22	0.10	ND	0.10	0.23										
Nitrogen/Nitrate, Nitrite	SM 4500 NO3 F	0.10	ND	0,10	0.22	0.10	ND	0.10	ND*	0.10	0.23								
Nitrogen/Nitrite	SM 4500 NO2 B	0.020	ND	0,020	ND	0.020	ND	0.020	ND										
pH	Obtained in field	NA	7.65	NA	8.17	NA	7.47	NA	7.30	NA	6.99	NA.	7.61	NA	7.36	NA	7,31	NA	7.43
Scienum	6020	0.0025	ND	0.0025	ND	0.013	ND	0.0025	ND										
Silver	6020	0.00050	ND	0.00050	ND	0.0025	ND	0.00050	ND										
Sulfate	9038	100	440	100	440	100	420	100	600	100	330	50	330	100	170	100	630	100	380
Thalhum	6020	0.0026	ND	0.0020	ND	0,0020	ND	0.0020	ND										
Total Dissolved Solids	SNL2540C	10	936	10	1200	10	1100	10	1300	10	980	10	910	10	1000	10	1200	10	1200
Zinc	6026	0.020	ND	0.020	ND	0.10	ND	0.020	ND										

Notes: Groundwater sample analyzed at TestAmerica laboratory. Well screen depth is from 9.0 to 19.0 feet below ground surface. Sample collected using low-flow technique. All values are so mg L (ppm)

DL - Detection limit ND - Non-detect NA - Not Applicable

*- Denotes instrument related QC exceeds the control limits

	Date	12/13.	12/13/2010	3/28/2011	2011	6/15/2011	2011	9/15/2011	2011	12/8/2011	1102	3/16/2012	2012	6/20/2012	2012	9/24/2012	2012	12/18/2012	2012
Parimeter	Lab Methad	D.L.	Result	D.L.	Result	D.L.	Result	D.L.	Result	DT	Result	D.L.	Result	DL	Result	DT	Result	D.C.	Result
Antimony	6020	0.00.0	JON	0.0030	QN	0.015	ND	0,0030	ON	0.0030	ND	0.0030	QN	0.0030	GZ	0.0030	QN	0.000.0	ND
Arsenic	6020	0.0000	6500'0	0.0010	0.0049	0.00050	0.0052	0.000.0	0.0065	0.00.0	82000	01000	0.0053	0.0010	0.0056	0.0000	0.0068	0.0010	0.0060
Barturn	6020	0.0025	0.025	0.0025	0.031	0.013	0.025	0.0025	0.023	0.0025	0.017	0.0025	0.023	0.0025	0,022	0.0025	0.026	0.0025	0.020
Beryllans	6020	0.0010	QN	0,0010	ND	0,000,0	Q.	0.000.0	Q.	0.0010	GN	0.00.0	QN	0.00010	QN	0.0010	QX	0/00/0	Q
Воти	6020	0.25	2.2	0.25	1.4	0.050	1.7	0.050	2.0	0.050	61	0.25	1.4	1.0	20 -	0.25	2.0	05.0	13
Cadmum	6020	0.00050	QN	0.00050	GN	0.0025	QN	0.00050	GN	0.00050	GN	0.00050	CN.	0.00050	GN.	0.00050	GN.	0.00000	Q
Chloride	9251	(1)	100	10	280	92	230	10	190	10	140	10	200	9	150	10	160	9	130
Сиопцип	8020	0.50050	Q.	0.0050	ND	0.025	Q	0.0050	S	0.0000	QN	0.0030	ND	0.0050	GN	0.0030	ND	0.000.0	Q
Cobalt	6020	01000	N.	0.00.0	ND	0.0050	Q.	0.0010	CZ.	0.0016	QN	0,0010	ND	0.0010	OZ.	0.0010	QN	0.0010	QN
Copper	6020	0.0020	QN	0.0020	QN	0.010	GN	0.0020	QN	0.0020	QN	0.0020	QN	0.0020	Q	0.0020	ON	0.0020	QN
Cyanule	9014	0.010	GN.	010.0	Ĉ	0.010	QN	0.010	S	0.010	QN	0.010	QX	010.0	8100	0.010	ND	0.010	GN
Fluoride	SM 4500 F.C.	01'0	0.33	0.10	0.36	0.10	0.28	0.10	870	0.10	0.38	0.10	0.39	0.10	0.32	0.10	0.41	01.0	0.42 *
Ston	64920	0.10	ND	0.10	QN	0.50	ND	0.10	ND	0.10	ND	01.0	Q	01.0	NO.	01.0	ND	01.0	ON
Lead	60)20	0.00050	ON	0.0000.0	GN	0.00050	OX	0.00030	ND	0.00050	GN	0.00050	ND	0.00050	QN	0.00050	ON.	0.00030	QN
Manganese	6020	0.0025	ND	0.0025	QN	0.013	GN	0.0025	ND	0.0025	GN	0.0025	CZ	0.0025	QN	0.0025	0.0036	0.0025	ON
Mercury	7470A	0.00020	ND	0.00020	ND	0.00020	QN	0.00020	QN	0.00020	GN	0.00020	ND	0.00020	QN	0.00020	ND	0.00020	GN
Nickel	6020	0.0020	ND	0.0620	QN	0.010	ND	0.0020	QN	0.0020	ND	0.0020	ND	0.0020	QN	0.0020	0.0022	0.0020	0,0023
Nitrogen/Nitrate	Natrogen Calc	0.10	QN	0.20	2.4	01.0	17	0.10	QN	0.10	6.1	0.10	3.2	0.10	ON	0.10	QN	0.10	7
Narogen/Narae, Narte	SM 4500 NO3 F	0.10	ND	0.10	3.6	0.10	16.0	0.10	0.18	0.10	2.0	0.50	3,3	0.10	ND	0.10	.QN	0.10	416
Nitrogen/Nitrile	SM 4500 NO2 B	0.10	14.0	0.20	13	0.020	0.16	0H0'0	0.22	0.020	51.d	0,020	0.12	0.020	0.027	0.020	0.023	0.10	0.55
PH	Obtained in field	NA	11) XX	Y.	10.87	XX	10.44	XX	10.27	N.A.	4.55	NA	10.56	N.A.	10.31	Y'Z	10,23	Y'N	10.42
Seleminni	0020	0.0025	0.0036	0.0025	0.0042	0.013	ND	0.0025	0.0045	0.0025	0.0031	0.0025	QN	0.0025	0.0026	0.0025	0.0031	0.0025	0.0039
Silver	6020	0.00050	QN	0.00050	ND	0.0025	QX	0.000050	QN	0,00050	CIN	0,00050	QX	0.00050	QN	0.000050	QN	0.00050	SN
Sullate	9038	100	410	100	320	100	410	20	400	90	270	98	340	100	340	100	380	9.	316
Thatterm	6020	0.0020	ND	0.0020	ND	0.0020	Q.	0,000,0	Q.	0.00.0	QN	0.0020	ND	0,0020	QN	0.0020	ND	0.0020	9
Total Dissolved Solids	SM 2540C	01	800	10	1000	10	940	10	850	01	099	01	820	10	8.80	91	800	01	780
Zinc	6020	0.020	S	0.020	GN	0.10	QN	0.020	ND	0.020	QN	0.020	ON	0.020	CZ	0.020	QN	0.020	SN

Table I. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Note: Unwindwater sample analyzed at TestAmerica laboratory Well screen depth is from 9.0 to 10.0 feet below ground surf Sample collected using level-flow actinique. All values are un may L. (typns).

DL - Defection limit ND - Non-defect

Denotes and rather to faite

Sample: MW-10	Date	121	12/13/2010	3/28/	3/28/2011	6/15/2011	1107	9/15/2011	1102	12/8/2011	1107	3/16/2012	2012	6/20/2012	2012	9/24/2012	2012	12/18/2012	2012
Parameter	Lab Method	D.L.	Result	D.L.	Result	D.L.	Result	D.F.	Result	D.L.	Result	D.L.	Result	DT	Result	D.L.	Result	D.L.	Result
Antunemy	6020	0.0030	ND	0,0030	GN	0.015	QN	0.0030	ND	0.0030	ND	0.0030	ND	0.0030	ND	00000	ND	0.000.0	ND
Arsenie	6020	0.0010	0.0041	01000	0.0046	0.0050	QN	0.0000	0.0088	0.000.0	0.0083	0.0010	0.0056	0.0010	0.0058	0.00.0	0.0098	0.0010	0.0085
Вапит	6020	0.0025	860,0	0.0025	160'0	0.013	0.091	0.0025	0,11	0.0025	0.11	0.0025	0.10	0.0025	0.10	0.0025	0.097	0.0025	0.11
Beryllium	6020	0.0010	QN	0.0010	ND	0.0010	QN	0.0010	ND	0.0010	ND	0.0010	QN	0,0010	Q	0.0010	ND	0100'0	Q.
Baum	6020	0.25	2.1	0.25	1.8	050:0	2.2	0.050	2.8	050.0	2.5	0.25	17	0.50	77	0.25	32	0.50	2.7
Cadmium	9030	0.00050	S	0.00050	ON	0.0025	GN.	0.00050	QN	0.00050	GN	0.00050	QN	0.00050	G Z	0.00050	GN	0.000.50	ON
Chlorate	9253	10	92	10	130	91	150	10	120	01	120	9	100	10	120	10	140	10	140
Съимпамт	6020	0.0000	QN	0.0050	N	0.025	ON	0.0050	ND	0.0050	QN	0.0050	ND	0.00050	QN	0.0050	ND	0.0050	ND
Cobalt	6020	0.0010	ND	0.0010	ND	0.0050	Q.	0,0010	ND	0.0000	QN	01000	QN	0,0010	ND	0.00.0	ND	0.0010	ND
Copper	6020	0.0020	gv	0.0020	GN	0.010	QN	0.0020	CZ	0.0020	GN	0.0020	GN	0,0020	GN	0.0020	QN	0.0020	ND
Cyanide	+106	0.010	QN	0.010	QN	0.010	010'0	0.010	QN	0.0.0	QN	0.010	QN	0.010	CZ	0100	QN	0.010	ON
Fluoride	SM 4500 F.C.	0.10	99'0	01.0	Z	01.0	0.65	0.10	0.67	0.16	0.59	0.10	0.52	0.10	0.58	01.0	0.72	0.10	0.59 ~
Iran	6020	0.10	0.32	0.10	0.46	0.50	0.63	01.0	0.60	0.10	17.0	0.10	19'0	0.10	0.5k	010	0.77	0.10	160
Lead	6020	0.00050	QN	0.00050	QN	0.00050	QN	0.00050	SN	0.00050	ON	0.00050	ND	0.00050	ND	0.00050	ND	0.00050	0.00050
Manganese	6020	0.0025	0.25	0.0025	0.22	0,013	0.25	0.0025	0.27	0.0025	0.29	0.0025	0.25	0.0025	0.26	0.0025	0.23	0.0025	0.39
Mercury	7470A	0.00020	ND	0.00020	ND	0.00020	ND	0.00020	QN	0.00020	QN	0.00020	QN	0.00020	QN	0.00020	ND	0.00020	Q
Nickel	6020	0.0026	ND	0.0020	ND	0.010	ND	0.0020	QN.	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	0.0022	0.0020	0,0023
Nitrogen Narate	Ninogen Calc	010	QN	0.10	ND	01:0	ND	01.0	Q	0.10	ND	01.0	GN	0.10	Q.	0.10	ND	0.10	QV
Nitrogen Narate, Narite	SM 4500 ND3 F	010	VUN.	0.10	ND	0.10	ND	0.10	ND	0.10	ND	0.10	ND	0.10	ND	0.10	-dN	0.10	GN
Nitrogen Nitrite	SM 4500 NO2 B	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	ND	0.020	QN	0.020	ND	0.020	Q
He	Obtained in field	N.A	7.61	Y.	8.14	NA	7.53	NA	7.45	NA	7.10	Y.	7.59	NA	7.39	Y'N	7.60	N.A.	7.47
Schnum	6020	0.0025	QN	0.0025	ND	0.013	ND	0.0025	0.0032	0.0025	ND	0.0025	CIN	0.0025	ON	0.0025	ND	0.0025	ND
Silver	6020	0.00050		0.00050	GN	0.0025	GN	0.00050	QN	0.00050	QN	0.00050	QX	0.00050	QN	0.00050	ND	0.00050	g
Suifate	9038	100	370	100	370	100	350	100	420	100	290	90	330	100	350	100	380	001	270
Thallium	6020	0.0020	QN	0,0020	QN	0.0020	QN	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	QN	0.0020	ND	0.0020	QN.
foral Desembed Solids	SM 2540C	10	966	10	096	10	0646	10	1000	10	1100	10	066	10	1000	10	970	10	1100
Zinc	6020	0.020	QN	0.020	ND	0.10	QN	0.020	QN	0.020	QN	0.020	ND	0.020	QN	0.020	ND	0.020	ON

Table 1. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

Table 2. Groundwater Analytical Results - Midwest Generation LLC, Will County Station, Romeoville, IL

12/18/2012	Sample	MW	/-01	MW	/-02	MW	V-03	MV	V-04	MW	/-05	MW	/-06	MW	V-07	MW	7-08	MW	V-09	MW	V-10
Parameter	Lab Method	D.L.	Result	D.L	Result																
Benzene	8260B	0.0005	ND																		
Ethylbenzene	8260B	0.0005	ND																		
Toluene	8260B	0.0005	ND																		
Xylenes, Total	8260B	0.001	ND	10,001	ND	0.001	ND	0,001	ND												
Perchlorate	314.0	0.004	ND	0.004	ND	0.004	ND	0.02	ND	0.004	ND										
Vanadium, Dissolved	6020	0.0050	ND	0.0050	ND	0.0050	ND	0.010	ND	0.0050	0.034	0.0050	ND	0.0050	ND	0.0050	ND	0.0050	0.031	0.0050	ND

Notes: Groundwater sample analyzed at TestAmerica laboratory, Sample collected using low-flow technique. Please see Table 1 for sample depths. All values are in mg/L (ppm) DL - Detection limit ND - Non-detect